

III Semester M.Sc. Examination, January 2019 (CBCS) CHEMISTRY

303 : OC : Organic Spectroscopy

Time: 3 Hours

Max. Marks: 70

Instruction: Answer question no. 1 and any five of the following.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

a) Which of the following has higher stretching frequency for carbonyl group? Give reason.

b) Calculate λ_{max} value for the following compounds using Woodward-Fiser rules.

- c) Write briefly the solvent effect on $n \to \Pi^*$ transition in UV spectroscopy.
- d) Differentiate chemically equivalent and magnetically equivalent protons taking suitable example.
- e) Integration is used in the interpretation of PMR but not for ¹³CMR. Why?
- f) What are deuterium exchange reactions? Mention their importance.
- g) Write the structure of an organic compound (MF: C₃H₄Cl₂O) that shows a singlet in its PMR spectrum.
- h) How do you differentiate between Cis- and trans-protons in an olefin by 1H- NMR?
- i) How do you distinguish acetanilide and N-methyl benzamide by ¹³C NMR?
- j) State nitrogen rule and give its importance in mass spectrometry.
- k) Deduce the structure of the compound from following spectral data:

Mol. formula : C₁₀H₁₂O₂

IR: 1780, 2985, 1600 cm⁻¹

¹H NMR = 1.2 (d,6H), 3.8(septet, 1H) and 7.8 (s, 5H).

I) El-MS are recorded only in rarified gaseous state. Explain.

- 2. a) A compound with M.F $C_eH_{to}O$ gave the following spectral data. uv : λ_{max} : 237 (ϵ = 11700) and 310 (ϵ = 57) IR : 3020, 2980, 1680 (vs) and 1460⁻¹cm. Deduce the structure of the compound.
 - b) How do you distinguish between intramolecular and intermolecular hydrogen bonding using IR spectroscopy?
 - c) Explain the factors affecting group frequencies in IR spectroscopy.(4+3+3=10)
- 3. a) Discuss anisotropic effects prevalent in 'H NMR for
 - i) Alkenes
 - ii) Alkynes.
 - b) Write a note on chemical shift reagents :
 - c) Give an example each for compounds which exhibit the following spin-systems according to Pople's nomenclature. (4+3+3=10)
 - i) AX.
 - ii) AM,,
 - iii) AB and
 - iv) A,X,.
- 4. a) Write briefly about off resonance decoupled ¹³C NMR spectrum.
 - b) Account on Nuclear Overhauser effect.
 - c) Discuss ¹⁹F NMR spectroscopy.

(3+4+3=10)

- 5. a) Explain the mechanism of McLafferty rearrangement taking suitable example.
 - b) Deduce the structure of an organic compound with mol.wt, 150 shows the following spectral data:

UV: λ_{max} 276 nm; IR: 3030-2979, 1695, 1692 cm⁻¹

¹H NMR = 2.1(s, 3H), 3.85(s, 3H), 7.2(d, 2H) and 7.65(d, 2H)

 c) Write briefly about FAB method of ionisation and give its advantages over other methods of ionisation. (4+3+3=10)

- 6. a) Write the comparison between IR and Raman.
 - b) Comment on the ¹H NMR spectra of completely pure and slightly impure ethanol sample.
 - c) Give an account on vicinal coupling and geminal coupling. (3+3+4=10)
- 7. a) Write note on COSY.
 - b) Sketch proton coupled, proton decoupled and off-resonance decoupled ¹³C NMR of 4-methyl acetophenone.
 - c) Illustrate the genesis and applications of isotope ion peaks in interpretation of MS.
- 8. a) Deduce the structure of an organic compound containing halogen which has following spectral data:

¹H NMR: multiplet between 7-7.5

Mass: M+ at m/z 234/236/238. Other fragment ion peaks at m/z 155/157.

- b) Discuss the basic principle of mass spectrometry.
- c) Deduce the structure of unknown compound (MF : C_4H_7N) which has following spectral data :

IR: 2941, 2275, 1460 cm⁻¹

¹H NMR = 1.33(d, 6H, J = 6.5 Hz), 2.72(m, 1H, J = 6.5 Hz). (3+3+4=10)

III Semester M.Sc. Examination, January 2019 (CBCS) CHEMISTRY

302 - OC : Chemistry of Natural Products

Time: 3 Hours

Max. Marks: 70

Instruction: Answer question No. 1 and any five of the following.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

a) Predict the products in the following:

Farnesol
$$\xrightarrow{\text{CrO}_3}$$
 ? $\xrightarrow{\text{I)} \text{NH}_2\text{OH}}$?

- b) What is isoprene rule? Explain with example.
- c) Formulate the reaction in the following:

$$\beta$$
-Carotene $\xrightarrow{\text{KMnO}_4}$? $\xrightarrow{\text{O}_3}$?

- d) How the presence of secondary amino group in ephedrine was confirmed?
- e) How the following interconversion is achieved?
 Morphine [?] → Codeine [?] → Thebaine
- f) Predict the product.

- g) Draw the structure of purine base present in nucleic acids.
- h) What are the deficiency diseases of Vitamin B₁₂?
- i) Formulate the reaction in the following:

Hae min
$$\xrightarrow{\text{Fe/HCO}_2\text{H}}$$
? $\xrightarrow{\text{Sn/HCI}}$? $\xrightarrow{\text{(O)}}$?

- j) Write the stereochemical structure of PGE1 and PGE2. Indicate the differences between them.
- k) Explain the role of insect pheromones in pest control.
- What are prostaglandins? Give any two biological functions of prostaglandins?